Keysight

E4981A Capacitance Meter

Data Sheet

Definitions and Specifications

This document provides specifications and supplemental information for the Keysight Technologies, Inc. E4981A capacitance meter. All specifications apply to the conditions of a $0^{\circ} \mathrm{C}$ to $45^{\circ} \mathrm{C}$ temperature range, unless otherwise stated, and 30 minutes after the instrument has been turned on.

Definitions

Specification (spec.): Warranted performance. Specifications include guard bands to account for the expected statistical performance distribution, measurement uncertainties, and changes in performance due to environmental conditions.

Supplemental information is intended to provide information that is helpful for using the instrument but that is not guaranteed by the product warranty.

Typical (typ.): Describes performance that will be met by a minimum of 80% of all products. It is not guaranteed by the product warranty.

A general descriptive term that does not imply a level of performance.

The available frequency is defined as follows.

$$
\begin{aligned}
& \text { E4981A-001: } 120 \mathrm{~Hz} / 1 \mathrm{kHz} / 1 \mathrm{MHz} / 1 \mathrm{MHz} \pm 1 \% / 1 \mathrm{MHz} \pm 2 \% \\
& \text { E4981A-002: } 120 \mathrm{~Hz} / 1 \mathrm{kHz}
\end{aligned}
$$

The information regarding "Frequency $1 \mathrm{MHz} / 1 \mathrm{MHz} \pm 1 \% / 1 \mathrm{MHz} \pm 2 \%$ " in specifications, supplemental and general information in not valid for the E4981A-002.

Basic specifications

where

Cp: Capacitance value measured using the parallel equivalent circuit model
Cs: Capacitance value measured using the series equivalent circuit model
D: Dissipation factor
0: Quality factor (inverse of D)
G: Equivalent parallel conductance measured using the parallel equivalent circuit model
Rp: Equivalent parallel resistance measured using the parallel equivalent circuit model
Rs: Equivalent series resistance measured using the series equivalent circuit model

Measurement

Measurement signals

Frequency	Allowable frequencies	120 Hz
		1 kHz
		1 MHz
		0.98 MHz ($1 \mathrm{MHz}-2 \%$)
		$0.99 \mathrm{MHz}(1 \mathrm{MHz}-1 \%)$
		$1.01 \mathrm{MHz}(1 \mathrm{MHz}+1 \%)$
		$1.02 \mathrm{MHz}(1 \mathrm{MHz}+2 \%)$
	Accuracy	$\pm 0.02 \%$
Level	Range	0.1 V to 1 V
	Resolution	0.01 V
	Accuracy	$\pm 5 \%$
Output mode	Continuous or Synchronous	
Source delay time ${ }^{1}$	Range	0 to 1 s
	Resolution	0.1 ms

[^0]Measurement time selection: $\quad 5$ speeds measurement time mode $N=1,2,4,6,8$
For information on the measurement time in each mode, refer to Table 15 "Measurement time."

Measurement range selection: Auto, Hold

Measurement range:

Measurement signal frequency:	10 nF	22 nF	47 nF	100 nF
120 Hz	220 nF	470 nF	$1 \mu \mathrm{~F}$	$2.2 \mu \mathrm{~F}$
	$4.7 \mu \mathrm{~F}$	$10 \mu \mathrm{~F}$	$22 \mu \mathrm{~F}$	$47 \mu \mathrm{~F}$
	$100 \mu \mathrm{~F}$	$220 \mu \mathrm{~F}$	$470 \mu \mathrm{~F}$	1 mF
Measurement signal frequency:	100 pF	220 pF	470 pF	1 nF
1 kHz	2.2 nF	4.7 nF	10 nF	22 nF
	47 nF	100 nF	220 nF	470 nF
	$1 \mu \mathrm{~F}$	$2.2 \mu \mathrm{~F}$	$4.7 \mu \mathrm{~F}$	$10 \mu \mathrm{~F}$
	$22 \mu \mathrm{~F}$	$47 \mu \mathrm{~F}$	$100 \mu \mathrm{~F}$	
Measurement signal frequency:	1 pF	2.2 pF	4.7 pF	10 pF
$1 \mathrm{MHz} / 1 \mathrm{MHz} \pm 1 \% / 1 \mathrm{MHz} \pm 2 \%$	22 pF	47 pF	100 pF	220 pF
	470 pF	1 nF		

For information on measurable range in each measurement mode, refer to "Available measurement ranges" (Tables 2 through 4).

Averaging:

Range	1 to 256 measurements
Resolution	1

Trigger mode:

Trigger delay time:

Measurement display ranges

Internal trigger (Int), Manual trigger (Man), External trigger (Ext), GPIB/USB/LAN trigger (Bus)

Range	0 to 1 s
Resolution	0.1 ms

Table 1 shows the range of the measured value that can be displayed on the screen.

Table 1. Allowable measured value display range

Parameter	Measurement display range
Cs, Cp	$\pm 1.000000 \mathrm{aF}$ to 999.9999 EF
D	± 0.000001 to 9.999999
Q	± 0.01 to 99999.99
Rs, Rp	± 1.000000 a Ω to $999.9999 \mathrm{E} \Omega$
G	± 1.000000 aS to 999.9999 ES
$\Delta \%$	$\pm 0.0001 \%$ to 999.9999%
a: $1 \times 10^{-18}, \mathrm{E}: 1 \times 10^{18}$	

Available measurement ranges

Tables 2 through 4 show recommended measurement ranges (recommended for accurate measurement) and significant measurement ranges (ranges that do not cause overload) for each measurement value under the condition D (dissipation factor) ≤ 0.5.

Table 2. Measurable capacitance ranges when measurement frequency is 120 Hz

Measurement range setting	Recommended measurement range	Significant measurement range
10 nF	0 F to 15 nF	0 F to 15 nF
22 nF	15 nF to 33 nF	0 F to 33 nF
47 nF	33 nF to 68 nF	0 F to 68 nF
100 nF	68 nF to 150 nF	0 F to 150 nF
220 nF	150 nF to 330 nF	0 F to 330 nF
470 nF	330 nF to 680 nF	0 F to 680 nF
$1 \mu \mathrm{~F}$	680 nF to $1.5 \mu \mathrm{~F}$	0 F to $1.5 \mu \mathrm{~F}$
$2.2 \mu \mathrm{~F}$	$1.5 \mu \mathrm{~F}$ to $3.3 \mu \mathrm{~F}$	0 F to $3.3 \mu \mathrm{~F}$
$4.7 \mu \mathrm{~F}$	$3.3 \mu \mathrm{~F}$ to $6.8 \mu \mathrm{~F}$	0 F to $6.8 \mu \mathrm{~F}$
$10 \mu \mathrm{~F}$	$6.8 \mu \mathrm{~F}$ to $15 \mu \mathrm{~F}$	0 F to $15 \mu \mathrm{~F}$
$22 \mu \mathrm{~F}$	$15 \mu \mathrm{~F}$ to $33 \mu \mathrm{~F}$	0 F to $33 \mu \mathrm{~F}$
$47 \mu \mathrm{~F}$	$33 \mu \mathrm{~F}$ to $68 \mu \mathrm{~F}$	0 F to $68 \mu \mathrm{~F}$
$100 \mu \mathrm{~F}$	$68 \mu \mathrm{~F}$ to $150 \mu \mathrm{~F}$	0 F to $150 \mu \mathrm{~F}$
$220 \mu \mathrm{~F}$	$150 \mu \mathrm{~F}$ to $330 \mu \mathrm{~F}$	0 F to $330 \mu \mathrm{~F}$
$470 \mu \mathrm{~F}$	$330 \mu \mathrm{~F}$ to $680 \mu \mathrm{~F}$	0 F to $680 \mu \mathrm{~F}$
1 mF	$680 \mu \mathrm{~F}$ to 2 mF	0 F to 2 mF

Available measurement ranges (continued)

Table 3. Measurable capacitance ranges when measurement frequency is 1 kHz

Measurement range setting	Recommended measurement range	Significant measurement range
100 pF	0 pF to 150 pF	0 F to 150 pF
220 pF	150 pF to 330 pF	0 F to 330 pF
470 pF	330 pF to 680 pF	0 F to 680 pF
1 nF	680 pF to 1.5 nF	0 F to 1.5 nF
2.2 nF	1.5 nF to 3.3 nF	0 F to 3.3 nF
4.7 nF	3.3 nF to 6.8 nF	0 F to 6.8 nF
10 nF	6.8 nF to 15 nF	0 F to 15 nF
22 nF	15 nF to 33 nF	0 F to 33 nF
47 nF	33 nF to 68 nF	0 F to 68 nF
100 nF	68 nF to 150 nF	0 F to 150 nF
220 nF	150 nF to 330 nF	0 F to 330 nF
470 nF	330 nF to 680 nF	0 F to 680 nF
$1 \mu \mathrm{~F}$	680 nF to $1.5 \mu \mathrm{~F}$	0 F to $1.5 \mu \mathrm{~F}$
$2.2 \mu \mathrm{~F}$	$1.5 \mu \mathrm{~F}$ to $3.3 \mu \mathrm{~F}$	0 F to $3.3 \mu \mathrm{~F}$
$4.7 \mu \mathrm{~F}$	$3.3 \mu \mathrm{~F}$ to $6.8 \mu \mathrm{~F}$	0 F to $6.8 \mu \mathrm{~F}$
$10 \mu \mathrm{~F}$	$6.8 \mu \mathrm{~F}$ to $15 \mu \mathrm{~F}$	0 F to $15 \mu \mathrm{~F}$
$22 \mu \mathrm{~F}$	$15 \mu \mathrm{~F}$ to $33 \mu \mathrm{~F}$	0 F to $33 \mu \mathrm{~F}$
$47 \mu \mathrm{~F}$	$33 \mu \mathrm{~F}$ to $68 \mu \mathrm{~F}$	0 F to $68 \mu \mathrm{~F}$
$100 \mu \mathrm{~F}$	$68 \mu \mathrm{~F}$ to $200 \mu \mathrm{~F}$	0 F to $200 \mu \mathrm{~F}$

Available measurement ranges (continued)

Table 4. Measurable capacitance ranges when measurement frequency is $1 \mathrm{MHz}, 1 \mathrm{MHz} \pm 1 \%$, $1 \mathrm{MHz} \pm 2 \%$

Measurement range setting 1 pF	Recommended measurement range	Significant measurement range
2.2 pF	0 F to 1.5 pF	0 F to 1.5 pF
4.7 pF	1.5 pF to 3.3 pF	0 F to 3.3 pF
10 pF	3.3 pF to 6.8 pF	0 F to 6.8 pF
22 pF	6.8 pF to 15 pF	0 F to 15 pF
47 pF	15 pF to 33 pF	0 F to 33 pF
100 pF	33 pF to 68 pF	0 F to 68 pF
220 pF	68 pF to 150 pF	0 F to 150 pF
470 pF	150 pF to 330 pF	0 F to 330 pF
1 nF	330 pF to 680 pF	0 F to 680 pF

Accuracy of Cp, Cs, D, G, Rs, Q and Rp

The measurement accuracy is defined when all of the following conditions are met:

- Warm-up time: 30 minutes or longer
- Ambient temperature: $18{ }^{\circ} \mathrm{C}$ to $28^{\circ} \mathrm{C}$
- Execution of OPEN Correction
- Execution of Cable Correction for 1 MHz measurement
- Measurement cable length: $0 \mathrm{~m}, 1 \mathrm{~m}$, or $2 \mathrm{~m}(16048 \mathrm{~A} / \mathrm{B} / \mathrm{D})^{1}$
$-\mathrm{D}($ dissipation factor $) \leq 0.5$

Tables 8 through 13 show the measurement accuracy of Cp, Cs, and D when $\mathrm{D} \leq 0.1$.

Table 14 shows the formula of the measurement accuracy of $\mathrm{G}, \mathrm{Rs}, \mathrm{O}$ and Rn when $\mathrm{D} \leq 0.1$.

When $0.1<\mathrm{D} \leq 0.5$, multiply the accuracy obtained in Tables 8 through 13 by the coefficient in Table 5.

Table 5. Dissipation factor Coefficient

Parameter	Coefficient
Cp, Cs, G, Rs ${ }^{2}$	$1+\mathrm{D}^{2}$
D	$1+\mathrm{D}$

Table 6. Formula of the measurement accuracy of G, $R_{s^{\prime}} O$ and R_{p}

Parameter	Formula
$\mathrm{G}_{\mathrm{e}}(\mathrm{G}$ accuracy $)$	$\left(\mathrm{C}_{\mathrm{e}} / 100\right) \times 2 \times \pi \times f \times \mathrm{C}_{\mathrm{x}}$
$\mathrm{Rs}_{\mathrm{e}}\left(\mathrm{R}_{\mathrm{s}}\right.$ accuracy $)$	$\left(\mathrm{C}_{\mathrm{e}} / 100\right) /\left(2 \times \pi \times f \times \mathrm{C}_{\mathrm{x}}\right)$
$\mathrm{Q}_{\mathrm{e}}(0$ accuracy $)$	$\frac{ \pm Q x^{2} \times D e}{1 \mp 0 x \times D e}$
$\mathrm{Rp}_{e}(R p$ accuracy $)$	$\frac{ \pm R p x^{2} \times G e}{1 \mp R p x \times G e}$

C: Cp or Cs accuracy [\%]
f: Measurement frequency [Hz]
\mathbf{C}_{x} : Measurement value of Cp or $\mathrm{Cs}[\mathrm{F}]$
$\mathbf{0}_{\boldsymbol{x}}$: Measurement value of 0
$R p_{\mathrm{x}}$: Measurement value of $\mathrm{Rp}[\Omega]$
De: D accuracy [\%]

[^1]Accuracy when ambient temperature exceeds the range of $18{ }^{\circ} \mathrm{C}$ to $28^{\circ} \mathrm{C}$ (typical)

Accuracy when an Alternative Current magnetic field is applied

When the ambient temperature exceeds the range of $18{ }^{\circ} \mathrm{C}$ to $28^{\circ} \mathrm{C}$, multiply the accuracy obtained above by the coefficient shown in the table below.

Table 7. Temparature Coefficient

	Coefficient
$0^{\circ} \mathrm{C} \leq$ ambient temperature $<8{ }^{\circ} \mathrm{C}$	3
$8{ }^{\circ} \mathrm{C} \leq$ ambient temperature $<18{ }^{\circ} \mathrm{C}$	2
$18^{\circ} \mathrm{C} \leq$ ambient temperature $\leq 28^{\circ} \mathrm{C}$	1
$28^{\circ} \mathrm{C} \leq$ ambient temperature $\leq 38^{\circ} \mathrm{C}$	2
$38^{\circ} \mathrm{C} \leq$ ambient temperature $\leq 45^{\circ} \mathrm{C}$	3

When an alternating current magnetic field is applied to the instrument. Multiply the accuracy obtained in Tables 8 through 13.
$1+B \times(2+0.5 \times K)$
B: Magnetic flux density [Gauss]
Cx: Measured value of the capacitance (Cp or Cs),
Cr: A measurement range [F]
Vs: A measurement signal level [V].

In Tables 8 through 13, K is defined as follows:
$\mathrm{Cx} \leq \mathrm{Cr}: \mathrm{K}=(1 / \mathrm{Vs}) \times(\mathrm{Cr} / \mathrm{Cx})$
$C x>C r: K=1 / V s$
where
Cx is measured value of the capacitance (Cp or Cs),
Cr is a measurement range and
Vs is a measurement signal level [V].

Measurement accuracy (continued)

Table 8. Measurement accuracy of Cp, Cs (measurement frequency: 120 Hz)
Cp, Cs [\%]

Measurement time mode (N)	1	2	4	6	8
10 nF 22 nF 47 nF 100 nF 220 nF 470 nF $1 \mu \mathrm{~F}$ $2.2 \mu \mathrm{~F}$ $4.7 \mu \mathrm{~F}$ $10 \mu \mathrm{~F}$ $22 \mu \mathrm{~F}$ $47 \mu \mathrm{~F}$ $100 \mu \mathrm{~F}$	$0.055+0.030 \times \mathrm{K}$	$0.055+0.022 \times \mathrm{K}$	$0.055+0.018 \times \mathrm{K}$	$0.055+0.016 \times \mathrm{K}$	$0.055+0.015 \times \mathrm{K}$
$\begin{aligned} & 220 \mu \mathrm{~F} \\ & 470 \mu \mathrm{~F} \\ & 1 \mathrm{mF} \end{aligned}$	$0.4+0.060 \times \mathrm{K}$	$0.4+0.044 \times \mathrm{K}$	$0.4+0.036 \times \mathrm{K}$	$0.4+0.032 \times \mathrm{K}$	$0.4+0.030 \times \mathrm{K}$

Table 9. Measurement accuracy of D (measurement frequency: 120 Hz)

D					
Measurement time mode (N)	1	2	4	6	8
10 nF 22 nF 47 nF 100 nF 220 nF 470 nF $1 \mu \mathrm{~F}$ $2.2 \mu \mathrm{~F}$ $4.7 \mu \mathrm{~F}$ $10 \mu \mathrm{~F}$ $22 \mu \mathrm{~F}$ $47 \mu \mathrm{~F}$ $100 \mu \mathrm{~F}$	$0.00035+0.00030 \times \mathrm{K}$	$0.00035+0.00022 \times \mathrm{K}$	$0.00035+0.00018 \times \mathrm{K}$	$0.00035+0.00016 \times \mathrm{K}$	$0.00035+0.00015 \times \mathrm{K}$
$\begin{aligned} & 220 \mu \mathrm{~F} \\ & 470 \mu \mathrm{~F} \\ & 1 \mathrm{mF} \end{aligned}$	$0.004+0.00060 \times \mathrm{K}$	$0.004+0.00044 \times \mathrm{K}$	$0.004+0.00036 \times \mathrm{K}$	$0.004+0.00032 \times \mathrm{K}$	$0.004+0.00030 \times K$

Measurement accuracy (continued)

Table 10. Measurement accuracy of Cp, Cs (measurement frequency: 1 kHz)

Cp, Cs [\%]

Measurement time mode (N)	1	2	4	6	8
100 pF	$0.055+0.070 \times \mathrm{K}$	$0.055+0.047 \times K$	$0.055+0.036 \times \mathrm{K}$	$0.055+0.033 \times \mathrm{K}$	$0.055+0.030 \times \mathrm{K}$
220 pF	$0.055+0.045 \times \mathrm{K}$	$0.055+0.032 \times \mathrm{K}$	$0.055+0.025 \times \mathrm{K}$	$0.055+0.022 \times \mathrm{K}$	$0.055+0.020 \times \mathrm{K}$
470 pF 1 nF 2.2 nF 4.7 nF 10 nF 22 nF 47 nF 100 nF 220 nF 470 nF $1 \mu \mathrm{~F}$ $2.2 \mu \mathrm{~F}$ $4.7 \mu \mathrm{~F}$ $10 \mu \mathrm{~F}$	$0.055+0.030 \times \mathrm{K}$	$0.055+0.022 \times \mathrm{K}$	$0.055+0.018 \times \mathrm{K}$	$0.055+0.016 \times \mathrm{K}$	$0.055+0.015 \times \mathrm{K}$
$\begin{aligned} & 22 \mu \mathrm{~F} \\ & 47 \mu \mathrm{~F} \\ & 100 \mu \mathrm{~F} \end{aligned}$	$0.4+0.060 \times \mathrm{K}$	$0.4+0.044 \times \mathrm{K}$	$0.4+0.036 \times \mathrm{K}$	$0.4+0.032 \times \mathrm{K}$	$0.4+0.030 \times \mathrm{K}$

Table 11. Measurement accuracy of D (measurement frequency: 1 kHz)

> D

Measurement time mode (N)	1	2	4	6	8
100 pF	$0.00035+0.00070 \times \mathrm{K}$	$0.00035+0.00047 \times \mathrm{K}$	$0.00035+0.00036 \times \mathrm{K}$	$0.00035+0.00033 \times \mathrm{K}$	$0.00035+0.00030 \times K$
220 pF	$0.00035+0.00045 \times \mathrm{K}$	$0.00035+0.00032 \times \mathrm{K}$	$0.00035+0.00025 \times \mathrm{K}$	$0.00035+0.00022 \times \mathrm{K}$	$0.00035+0.00020 \times \mathrm{K}$
470 pF 1 nF 2.2 nF 4.7 nF 10 nF 22 nF 47 nF 100 nF 220 nF 470 nF $1 \mu \mathrm{~F}$ $2.2 \mu \mathrm{~F}$ $4.7 \mu \mathrm{~F}$ $10 \mu \mathrm{~F}$	$0.00035+0.00030 \times \mathrm{K}$	$0.00035+0.00022 \times \mathrm{K}$	$0.00035+0.00018 \times \mathrm{K}$	$0.00035+0.00016 \times \mathrm{K}$	$0.00035+0.00015 \times \mathrm{K}$
$22 \mu \mathrm{~F}$ $47 \mu \mathrm{~F}$ $100 \mu \mathrm{~F}$	$0.004+0.00060 \times \mathrm{K}$	$0.004+0.00044 \times \mathrm{K}$	$0.004+0.00036 \times \mathrm{K}$	$0.004+0.00032 \times \mathrm{K}$	$0.004+0.00030 \times \mathrm{K}$

Measurement accuracy (continued)

Table 12. Measurement accuracy of Cp, Cs (measurement frequency: $1 \mathrm{MHz}, 1 \mathrm{MHz} \pm 1 \%, 1 \mathrm{MHz} \pm 2 \%$)

Cp, Cs [\%]

Measurement time mode (N)	1	2	4	6	8
1 pF	$0.055+0.070 \times \mathrm{K}$	$0.055+0.047 \times \mathrm{K}$	$0.055+0.036 \times \mathrm{K}$	$0.055+0.033 \times \mathrm{K}$	$0.055+0.030 \times \mathrm{K}$
2.2 pF	$0.055+0.045 \times \mathrm{K}$	$0.055+0.032 \times \mathrm{K}$	$0.055+0.025 \times \mathrm{K}$	$0.055+0.022 \times \mathrm{K}$	$0.055+0.020 \times \mathrm{K}$
4.7 pF 10 pF 22 pF 47 pF 100 pF 220 pF 470 pF 1 nF	$0.055+0.030 \times \mathrm{K}$	$0.055+0.022 \times \mathrm{K}$	$0.055+0.018 \times \mathrm{K}$	$0.055+0.016 \times \mathrm{K}$	$0.055+0.015 \times \mathrm{K}$

Table 13. Measurement accuracy of D (measurement frequency: $1 \mathrm{MHz}, 1 \mathrm{MHz} \pm 1 \%, 1 \mathrm{MHz} \pm 2 \%$)

D

Measurement time mode (N)	1	2	4	6	8
1 pF	$0.00035+0.00070 \times \mathrm{K}$	$0.00035+0.00047 \times \mathrm{K}$	$0.00035+0.00036 \times \mathrm{K}$	$0.00035+0.00033 \times \mathrm{K}$	$0.00035+0.00030 \times \mathrm{K}$
2.2 pF	$0.00035+0.00045 \times \mathrm{K}$	$0.00035+0.00032 \times \mathrm{K}$	$0.00035+0.00025 \times \mathrm{K}$	$0.00035+0.00022 \times \mathrm{K}$	$0.00035+0.00020 \times \mathrm{K}$
4.7 pF 10 pF 22 pF 47 pF 100 pF 220 pF 470 pF 1 nF	$0.00035+0.00030 \times \mathrm{K}$	$0.00035+0.00022 \times \mathrm{K}$	$0.00035+0.00018 \times \mathrm{K}$	$0.00035+0.00016 \times \mathrm{K}$	$0.00035+0.00015 \times \mathrm{K}$

Figure 1. Accuracy of D when measurement frequency is 120 Hz (measurement range: 10 nF to $100 \mu \mathrm{~F}$ / measurement signal level: 0.5 V)

Figure 2. Accuracy of Cp and Cs when measurement frequency is 120 Hz (measurement range: 10 nF to $100 \mu \mathrm{~F} /$ measurement signal level: 0.5 V)

Figure 3. Accuracy of D when measurement frequency is 120 Hz
(measurement range: 220μ F to 1 mF / measurement signal level: 1 V)

Accuracy of Cp and Cs when measurement frequency is 120 Hz (measurement signal level: 0.5 V)

Figure 4. Accuracy of $C p$ and Cs when measurement frequency is 120 Hz (measurement range: 220μ F to 1 mF / measurement signal level: 1 V)

Figure 5. Accuracy of D when measurement frequency is 1 kHz
(measurement range: 100 pF to $10 \mu \mathrm{~F} /$ measurement signal level: 1 V)

Figure 6. Accuracy of $C p$ and Cs when measurement frequency is 1 kHz (measurement range: 100 pF to $10 \mu \mathrm{~F} /$ measurement signal level: 1 V)

Figure 7. Accuracy of D when measurement frequency is 1 kHz (measurement range: $22 \mu \mathrm{~F}$ to $100 \mu \mathrm{~F}$ / measurement signal level: 1 V)

Figure 8. Accuracy of Cp and Cs when measurement frequency is 1 kHz (measurement range: $22 \mu \mathrm{~F}$ to $100 \mu \mathrm{~F} /$ measurement signal level: 1 V)

Figure 9. Accuracy of Cp and Cs when measurement frequency is 1 MHz (measurement signal level: 1 V)

Figure 10. Accuracy of D when measurement frequency is 1 MHz (measurement signal level: 1 V)

Sample calculation of measurement accuracy is described on page 31.

Measurement signals

Output impedance	Frequency: 120 Hz	SLC OFF ($\geq 220 \mu \mathrm{~F}$ range) SLC ON ($\geq 220 \mu \mathrm{~F}$ range) $2.2 \mu \mathrm{~F}$ to $100 \mu \mathrm{~F}$ range 10 nF to $1 \mu \mathrm{~F}$ range	$\begin{aligned} & 1.5 \Omega(\text { nom. })^{1} \\ & 0.3 \Omega(\text { nom. })^{1} \\ & 0.3 \Omega(\text { nom.) } \\ & 20 \Omega(\text { nom. })^{1} \end{aligned}$
	Frequency: 1 kHz	SLC OFF ($\geq 22 \mu$ F range) SLC ON ($\geq 22 \mu \mathrm{~F}$ range) 220 nF to $10 \mu \mathrm{~F}$ range 100 pF to 100 nF range	$\begin{aligned} & 1.5 \Omega(\text { nom. })^{1} \\ & 0.5 \Omega(\text { nom. } \\ & 0.3 \Omega(\text { nom. })^{1} \\ & 20 \Omega(\text { nom. })^{1} \end{aligned}$
	Frequency: $1 \mathrm{MHz} / 1 \mathrm{MHz} \pm 2 \% / 1 \mathrm{MHz} \pm 1 \%$		20Ω (nom. $)^{1}$

Measurement time

Figure 11. Timing chart and measurement time

1. This value is defined without an extension cable.

Table 14 shows the values of T1 - T5 when the following conditions are met:

- Display update: Off
- Synchronous source: On
- Measurement range mode: Hold range mode (Hold)
- Source delay time: 0 ms
- Trigger delay time: 0 ms
- Averaging factor: 1
- SLC: Off
- Measurement time mode (N): 1
- Correction: On
- Multi connection: On
- LAN: Not connected

Table 14. Values of T1 - T5 (typical)

	Measurement frequency	Minimum value	Typical value
T1	N/A	$1 \mu \mathrm{~s}$	-
Trigger pulse width	N/A	-	$40 \mu \mathrm{~s}$
T2			
Trigger response time of /READY_FOR_TRIG, /INDEX and /EOM			

(T3 + T4)	T3			
Measurement time	Analog measurement time	120 Hz	1 kHz	-
T3 + T4)	T 4	-	10.0 ms	
Measurement time	Measurement computation time	N / A	-	1.3 ms
T5		N / A	-	1.0 ms
Trigger wait time			$0 \mu \mathrm{Sec}$	-

Display time
Except in the case of the DISPLAY BLANK page, the time required to update the display on each page (display time) is as follows (Table 15). When the screen is changed, drawing time and switching time are added. The measurement display is updated about every 100 ms .

Table 15. Display time

Item	Time
MEAS DISPLAY page drawing time	10 ms
MEAS DISPLAY page (large) drawing time	10 ms
BIN No. DISPLAY page drawing time	10 ms
BIN COUNT DISPLAY page drawing time	10 ms
Measurement display switching time	35 ms

Table 16 shows the measurement time $(T 3+T 4)$ for each measurement time mode.

Measurement time
Table 16. Measurement time

Frequency	Measurement time [ms]
120 Hz	$(\mathrm{~N} \times 8.3 \times$ Ave +2.7$) \pm 0.5$
1 kHz	$(\mathrm{N} \times 1.0 \times$ Ave +2.0$) \pm 0.5$
$1 \mathrm{MHz} / 1 \mathrm{MHz} \pm 1 \% / 1 \mathrm{MHz} \pm 2 \%$	$(\mathrm{~N} \times 1.0 \times(100 /(100+$ Fshift $)) \times$ Ave +1.3$) \pm 0.5$

Measurement time mode (N) $=1,2,4,6,8$
Ave: Averaging factor
Fshift: Frequency shift setting

Measurement data transfer time

Table 17 shows the measurement data transfer time under the following conditions. The measurement transfer time varies with the measurement conditions and computer used.

- Host computer: DELL PRECISION 390, 1.86 GHz/Windows XP
- USB GPIB Interface Card: 82350A
- USB GPIB Interface: E2078A
- Display: ON
- Measurement range mode: Hold range mode (Hold)
- OPEN/SHORT/LOAD correction: OFF
- Measurement signal monitor: OFF
- BIN count function: OFF

Table 17. Measurement data transfer time (typical)

Interface	Data transfer format	using :FETC? command (one point measurement)		using : READ command (one point measurement)		using data buffer memory (1000 measurement points (BUFFER3))	
		Comparator ON [ms]	Comparator OFF [ms]	Comparator ON [ms]	Comparator OFF [ms]	Comparator ON [ms]	Comparator OFF [ms]
GPIB	ASCII	1	1	3	3	202	186
	ASCII Long	1	1	3	3	247	231
	Binary	1	1	3	4	145	111
USB	ASCII	1	1	4	4	101	94
	ASCII Long	1	1	4	4	121	114
	Binary	1	1	4	4	43	33
LAN	ASCII	3	3	5	5	158	146
	ASCII Long	3	3	6	6	193	181
	Binary	5	5	7	7	105	79

Measurement Assistance Functions

Measurement assistance functions

Correction function	- OPEN/SHORT/LOAD Correction are available - The OFFSET Correction is available
MULTI Correction function	- OPEN/SHORT/LOAD Correction for 256 channels - The LOAD Correction standard value can be defined for each channel
Cable Correction funtion	Cable Correction is available
Deviation measurement function	Deviation from reference value and percentage of deviation from the reference value can be outputted as the result
Comparator function	- BIN sort: The primary parameter can be sorted into 9 BINs, OUT_OF_BINS, AUX_BIN, and LOWC_OR_NC. The secondary parameter can be sorted into High, In, and Low. - Limit setup: An absolute value, deviation value, and \% deviation value can be used for setup - Bin count: Countable from 0 to 999999
Low C reject function	Extremely low measured capacitance values can be automatically detected as measurement errors
Contact check function	The contact check function is available on 120 Hz and 1 kHz
Single Level Compensation	- SLC function compensates the voltage drop by the resistance inside the E4981A and the extension cable under the following frequencies and ranges - Measurement cable: 16048A or 16048D - When the measurement frequency is $120 \mathrm{~Hz}: 220 \mu \mathrm{~F}$ range, $470 \mu \mathrm{~F}$ range, 1 mF range - When the measurement frequency is $1 \mathrm{kHz}: 22 \mu \mathrm{~F}$ range, $47 \mu \mathrm{~F}$ range, $100 \mu \mathrm{~F}$ range

Measurement signal level monitor function	- Measurement voltage and measurement current can be monitored - Level monitor accuracy (typical): $\pm(3 \%+1 \mathrm{mV})$
Data buffer function	Up to 1000 measurement results can be read out in batch
Save/recall function	- Up to 10 setup conditions can be written to/read from the built-in nonvolatile memory - Up to 10 setup conditions can be written to/read from the external USB memory - Auto recall function can be performed when the setting conditions are written to Register 9 in the built-in non-volatile memory
Key lock function	The front panel keys can be locked
GPIB interface	Complies with IEEE488.1, 2 and SCPI
USB host port	Universal serial bus jack, type-A (4 contact positions, contact 1 is on your left); female; for connection to USB memory device only Note: The following USB memory can be used. - Complies with USB 1.1; mass storage class, FAT16/FAT32 format; maximum consumption current is below 500 mA - Recommended USB memory: 4 GB USB Flash memory (Keysight PN 1819-0637) - Use the prepared USB memory device exclusively for the E4981A; otherwise, other previously saved data may be cleared. If you use a USB memory other than the recommended device, data may not be saved or recalled normally. - Keysight will NOT be responsible for data loss in the USB memory caused by using the E4981A
USB interface port	- Universal serial bus jack, type mini-B (4 contact positions); complies with USBTMC-USB488 and USB 2.0; female; for connection to the external controller. - USBTMC: Abbreviation for USB Test \& Measurement Class
LAN interface	- 10/100 BaseT Ethernet, 8 pins; two speed options - Compliant with LXI standard (LAN eXtensions for Instrumentation): Version 1.2, Class C - Auto MDIX
Handler interface	The input/output signals are negative logic and optically isolated open collector signals - Output signal: Bin1-Bin9, Out of Bins, Aux Bin, P-Hi, P-Lo, S-Reject, INDEX, EOM, Alarm, OVLD, Low C Reject or No Contact, Ready_For_Trigger - Input signal: Keylock, Ext-Trigger
Scanner interface	The input/output signals are negative logic and optically isolated open collector signals - Output signal: INDEX, EOM - Input signal: Ch0 - Ch7, Ch valid, Ext-Trigger
Measurement circuit protection	The maximum discharge withstand voltage, where the internal circuit remains protected if a charged capacitor is connected to the UNKNOWN terminal, is illustrated below. NOTE: Discharge capacitors before connecting them to the UNKNOWN terminal or a test fixture. Table 18. Maximum discharge withstand voltage (typical)
	Maximum discharge withstand voltage Range of capacitance value C of DUT
	1000 V
	$\overline{\sqrt{2 / C} \mathrm{~V}} \mathrm{C} \geq 2 \mu \mathrm{~F}$

Figure 13. Maximum discharge withstand voltage (typical)

General Specifications

Power source	90 VAC to 264 VAC
Voltage	47 Hz to 63 Hz
Frequency	Maximum 150 VA
Power consumption	
	$0^{\circ} \mathrm{C} \mathrm{to} 45^{\circ} \mathrm{C}$
Operating environment	15% to $85 \% \mathrm{RH}$
Temperature	0 m to 2000 m
Humidity ($\leq 40^{\circ} \mathrm{C}$, no condensation)	
Altitude	

Storage environment

Temperature	$-20^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Humidity $\left(\leq 65^{\circ} \mathrm{C}\right.$, no condensation)	0% to $90 \% \mathrm{RH}$
Altitude	0 m to 4572 m

Other	
Weight	4.3 kg (nominal)
Display	LCD, 320×240 (pixel), RGB color
Outer dimensions	370 (width) $\times 105$ (height) $\times 405$ (depth) mm (nominal)

Figure 14. Dimensions (front view, with handle and bumper, in millimeters, nominal)

Figure 15. Dimensions (front view, without handle and bumper, in millimeters, nominal)

Figure 16. Dimensions (rear view, with handle and bumper, in millimeters, nominal)

Figure 17. Dimensions (rear view, without handle and bumper, in millimeters, nominal)

Figure 18. Dimensions (side view, with handle and bumper, in millimeters, nominal)

Figure 19. Dimensions (side view, without handle and bumper, in millimeters, nominal)

Sample Calculation of Measurement Accuracy

This section describes an example for calculating the measurement accuracy of each measurement parameter, assuming the following measurement conditions

Sample

- Measurement signal frequency: 1 kHz
- Measurement signal level: 0.5 V
- Measurement range: 10 nF
- Measurement time mode: $\mathrm{N}=1$
- Ambient temperature: $28^{\circ} \mathrm{C}$

When measurement
parameter is Cp-D (or Cs-D)

The following is an example for calculating the accuracy of Cp (or Cs) and D , assuming that measured result of Cp (or Cs) is 8.00000 nF and measured result of D is 0.01000 .

From Table 7, the equation to calculate the accuracy of Cp (or Cs) is
$0.055+0.030 \times K$
and the equation to calculate the accuracy of D is
$0.00035+0.00030 \times K$

The measurement signal level is 0.5 , the measurement range is 10 nF , and the measured result of Cp (or Cs) is 8.00000 nF . Therefore,
$K=(1 / 0.5) \times(10 / 8.00000)=2.5$
Substitute this result into the equation. As a result, the accuracy of Cp (or Cs) is $0.055+0.030 \times 2.5=0.13 \%$
and the accuracy of D is
$0.00035+0.00030 \times 2.5=0.0011$

Therefore, the true Cp (or Cs) value exists within
$8.00000 \pm(8.00000 \times 0.13 / 100)=8.00000 \pm 0.0104 \mathrm{nF}$
that is,
7.9896 nF to 8.0104 nF and the true D value exists within
0.01000 ± 0.0011
that is,
0.0089 to 0.0111

When measurement
parameter is $\mathrm{Cp}-\mathrm{Q}$ (or Cs-Q)

The following is an example for calculating the accuracy of Cp (or Cs) and 0 , assuming that measured result of Cp (or Cs) is 8.00000 nF and measured result of O is 20.0.

The accuracy of $C p$ (or $C s$) is the same as that in the example of $C p-D$.

From Table 8, the equation to calculate the accuracy of D is
$0.00035+0.00030 \times K$

Substitute $K=2.5$ (same as $C p-D$) into this equation.
The accuracy of D is
$0.00035+0.00030 \times 2.5=0.0011$

Then, substitute the obtained D accuracy into Equation 1. The accuracy of 0 is
$\pm(20.0)^{2} \times 0.0011 /(1 \mp 20.0 \times 0.0011)= \pm 0.44 /(1 \mp 0.022)$
that is,
-0.43 to 0.45

Therefore, the true 0 value exists within the range of
19.57 to 20.45

When measurement parameter is $\mathrm{Cp}-\mathrm{G}$

The following is an example for calculating the accuracy of Cp and G , assuming that measured result of Cp is 8.00000 nF and measured result of G is $1.00000 \mu \mathrm{~S}$.

The accuracy of $C p$ is the same as that in the example of $C p-D$.
From Table 11, the equation to calculate the accuracy of G is
$(3.5+2.0 \times K) \times C x$

Substitute K = 2.5 (same as $\mathrm{Cp}-\mathrm{D}$) and 8.00000 nF of the measured Cp result into this equation.

The accuracy of G is $(3.5+2.0 \times 2.5) \times 8.00000=68 \mathrm{nS}(0.068 \mu \mathrm{~S})$

Therefore, the true G value exists within
$1.00000 \pm 0.068 \mu \mathrm{~S}$
that is,
$0.932 \mu \mathrm{~S}$ to $1.068 \mu \mathrm{~S}$

When measurement parameter is $\mathrm{Cp}-\mathrm{Rp}$

The following is an example for calculating the accuracy of $C p$ and $R p$, assuming that measured result of Cp is 8.00000 nF and measured result of Rp is $2.00000 \mathrm{M} \Omega$.

The accuracy of $C p$ is the same as that in the example of $C p-D$.
From Table 11 the equation to calculate the accuracy of G is
$(3.5+2.0 \times K) \times C x$
Substitute $\mathrm{K}=2.5$ (same as $\mathrm{Cp}-\mathrm{D}$) and 8.00000 nF of the measured Cp result into this equation.

The accuracy of G is
$(3.5+2.0 \times 2.5) \times 8.00000=68 \mathrm{nS}$
Then, substitute the obtained G accuracy into Equation 2. The accuracy of $R p$ is
$\pm\left(2 \times 10^{6}\right)^{2} \times 68 \times 10^{-9} /\left(1 \mp 2 \times 10^{6} \times 68 \times 10^{-9}\right)= \pm 0.272 \times 10^{6} /(1 \mp 0.136)$
that is,
$-0.23944 \mathrm{M} \Omega$ to $0.31481 \mathrm{M} \Omega$

Therefore, the true $R p$ value exists within
$1.76056 \mathrm{M} \Omega$ to $2.31481 \mathrm{M} \Omega$

When measurement parameter is Cs-Rs

The following is an example for calculating the accuracy of $C p$ and Rs, assuming that measured result of Cs is 8.00000 nF and measured result of Rs is $4.00000 \mathrm{k} \Omega$.

Because the Cs accuracy is
$D=2 \times \pi \times$ Freq $\times C s \times R p=2 \times \pi \times 10^{3} \times 8 \times 10^{-9} \times 4 \times 10^{3}=0.2>0.1$
multiply 0.13% (the result obtained for Cs-D) by $1+\mathrm{D} 2$.

The result is
$0.13 \times(1+0.22)=0.1352 \%$
From Table 11 the equation to calculate the accuracy of Rs is
$(90+50 \times K) / C x$
Substitute $\mathrm{K}=2.5$ (same as $\mathrm{Cs}-\mathrm{D}$) and 8.00000 nF of the measured Cs result into this equation.

The accuracy of G is
$(90+50 \times 2.5) / 8.00000=26.875 \Omega$
Because $\mathrm{D}>0.1$, multiply the result by $1+\mathrm{D} 2$ as in the case of Cs . The final result is 27.95Ω.

Therefore, the true Cs value exists within
$8.00000 \pm(8.00000 \times 0.1352 / 100)=8.00000 \pm 0.01082 \mathrm{nF}$
that is,
7.98918 nF to 8.01082 nF
and the true Rs value exists within
$4.00000 \pm 0.02795 \mathrm{k} \Omega$
that is,
3.97205 to $4.02795 \mathrm{k} \Omega$

myKeysight

myKeysight

 consortium.
www.pxisa.org measurements.

www.keysight.com/find/mykeysight

A personalized view into the information most relevant to you.
www.axiestandard.org

AdvancedTCA ${ }^{\circledR}$ Extensions for Instrumentation and Test (AXIe) is an open standard that extends the AdvancedTCA for general purpose and semiconductor test. Keysight is a founding member of the AXIe consortium. ATCA ${ }^{\circledR}$, AdvancedTCA ${ }^{\circledR}$, and the ATCA logo are registered US trademarks of the PCI Industrial Computer Manufacturers Group.
www.lxistandard.org
LAN eXtensions for Instruments puts the power of Ethernet and the Web inside your test systems. Keysight is a founding member of the LXI

PCI eXtensions for Instrumentation (PXI) modular instrumentation delivers a rugged, PC-based high-performance measurement and automation system.

Three-Year Warranty
www.keysight.com/find/ThreeYearWarranty
Keysight's commitment to superior product quality and lower total cost of ownership. The only test and measurement company with three-year warranty standard on all instruments, worldwide.

Keysight Assurance Plans
www.keysight.com/find/AssurancePlans
Up to five years of protection and no budgetary surprises to ensure your instruments are operating to specification so you can rely on accurate
www.keysight.com/quality
Keysight Technologies, Inc.
DEKRA Certified ISO 9001:2008
Quality Management System
Keysight Channel Partners

www.keysight.com/find/channelpartners

Get the best of both worlds: Keysight's measurement expertise and product breadth, combined with channel partner convenience.

For more information on Keysight
Technologies' products, applications or services, please contact your local Keysight office. The complete list is available at: www.keysight.com/find/contactus

Americas	
Canada	(877) 8944414
Brazil	551133517010
Mexico	0018002542440
United States	(800) 8294444
Asia Pacific	
Australia	1800629485
China	8008100189
Hong Kong	800938693
India	1800112929
Japan	0120 (421) 345
Korea	0807690800
Malaysia	1800888848
Singapore	18003758100
Taiwan	0800047866
Other AP Countries	(65) 63758100
Europe \& Middle East	
Austria	0800001122
Belgium	080058580
Finland	0800523252
France	0805980333
Germany	08006270999
Ireland	1800832700
Israel	1809343051
Italy	800599100
Luxembourg	+32 80058580
Netherlands	08000233200
Russia	88005009286
Spain	0800000154
Sweden	0200882255
Switzerland	0800805353
	Opt. 1 (DE)
	Opt. 2 (FR)
	Opt. 3 (IT)
United Kingdom	08000260637

For other unlisted countries: www.keysight.com/find/contactus (BP-07-10-14)

This information is subject to change without notice.
© Keysight Technologies, 2011-2014
Published in USA, August 1, 2014
5989-8963EN
www.keysight.com

[^0]: 1. Source delay time is effective when output mode is set to Synchronous mode.
[^1]: 1. The outer conductor resistance of cable requires the following condition. 16048A/B: $62 \mathrm{~m} \Omega$ or below 16048D: $90 \mathrm{~m} \Omega$ or below
 2. If you select a secondary measurement parameter other than D , calculate D .
